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Introduction 
In recent years, the force and density approaches based 

on the electrostatic Hellmann-Feynman (H-F) theorem1 have 
received much attention in molecular quantum chemistry.2 The 
primary advantage of the force concept lies in its simplicity and 
visuality compared with those of the energetics. Furthermore, 
the H-F forces are directly connected with the electron density 
of a system, so that the forces along the process are mainly 
governed by the behavior of the electron density along the 
process.3,4 From this point of view, we have given previously 
a density-guiding rule for nuclear-rearrangement processes, 
based on intuition for the region-functional roles of the electron 
density along the process.4 

In 1951, Berlin considered the region-functional role of the 
electron density for diatomic molecules.5 He divided the mo­
lecular space into binding and antibinding regions. Namely, 
the electron density in the binding region gives a force which 
binds the two nuclei, while the density in the antibinding region 
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gives a force which separated the nuclei. At the equilibrium 
internuclear distance, the binding force just balances with the 
sum of the antibinding force and the nuclear repulsion. For 
diatomic molecules, Bader et al.6a and others6b have studied 
the nature of chemical bonds using the Berlin diagram su­
perposed on the electron density and density difference 
maps. 

For polyatomic molecules, Bader7a and Johnson8 have 
"synthesized" generalized Berlin diagrams by superposing the 
diatomic Berlin diagrams for the bonds included in a molecule. 
Bader and Preston7b have also considered a different super­
position. Though they have obtained some intuitive results from 
such diagrams, their method seems to be less general. Indeed, 
it would be difficult to get a region-functional diagram for a 
bending mode, a twisting mode, etc. from such a simple mod­
ification of the diatomic Berlin diagram. 

A purpose of this paper is to generalize unambiguously 
Berlin's region-functional concept of electron density to any 
internal coordinates of polyatomic molecules. We will use the 
center-of-mass-of-the-nuclei (CMN) coordinates, instead of 
the geometric-center-of-the-nuclei (GCN) coordinates used 
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by Berlin. The latter is obtained as a special case of the former. 
We first consider the case of diatomic molecules and then ex­
tend the idea to polyatomic molecules. In the generalized Berlin 
diagram, the space around the molecule is divided into accel­
erating (A) and resisting (R) regions with respect to the process 
along any internal (symmetry and normal) coordinates of a 
molecule. It defines explicitly the regions for the density-
guiding rule.4 We illustrate the generalized Berlin diagrams 
for the three symmetric coordinates of the triatomic AB2 
molecules. We superpose these diagrams on the electron den­
sity of H2O and show how these diagrams actually work in 
studying the geometry of molecule. 

Binding and Antibinding Regions in the CMN Coordinates 
We consider the binding force in a diatomic molecule AB 

which has nuclei A and B and electrons (ij. Though Berlin 
considered the binding force using the GCN coordinates, it 
seems adequate to use the CMN coordinates since the internal 
motions in many-particle systems are more appropriately de­
scribed in the CMN coordinates. In the following, we briefly 
compare the binding forces in the CMN and GCN coordinates 
and show the binding and antibinding regions in the CMN 
coordinates. 

We first compare the momenta in both coordinates, from 
which the force operators are derived. The momenta PR con­
jugate to the internuclear vector R are given by 

P R ( C M N ) = (wAPB - mBPA)/(mA + mB) Oa) 

PR(GCN) = (PB - PA)/2 
+ (PA + PB + E Pi)(^A - ^ B ) / 2 M (lb) 

i 

where P's on the right-hand side represent the momenta of 
nuclei and electrons, m is the nuclear mass, and M is the mass 
of the molecule. Equation 1 shows that in the CMN coordi­
nates, PR is the difference in the nuclear momenta with mass 
factors, but in the GCN coordinates, it includes the external 
translational momentum except for the homonuclear case (the 
second term). The binding force operators 7 R are obtained 
from the commutation of the electronic Hamiltonian H and 
the momenta PR, 7 R = / [ / / , P R ] . 9 They are 

^ R ( C M N ) = (mA3B-mB3A)/(mA + mB) (2a) 

^ R ( G C N ) = 7R(CMN) 

+ (?A + ?B)(mB-mA)/2(mA + mB) (2b) 

where 7 A and JB mean the force operators for the nuclei A and 
B, respectively. In contrast to the operator 7 R ( C M N ) , 
^ R ( G C N ) includes the operator of the external translational 
force (57A + ^ B ) except for homonuclear diatomics {mA = 
mB). This is due to the fact that in the GCN coordinates, the 
internal motion is not well separated from the external motion. 
Therefore, the CMN coordinates seem to be more suitable than 
the GCN coordinates for the study of the binding force (in­
ternal force) in diatomic molecules. Using the force operators 
(eq 2) with the electron density p(t\), we obtain the binding 
forces as 

FR = <5R> = -jyP(r ,)dr, + Z A Z B / / ? 2 (3) 

where/is the electronic part of the force operator given by 

/(CMN) = -j- \mB{ZA cos 0 A / ' A I 2 ) 
WA + mB 

+ mA(ZB cos 6B/rBl
2)\ (4a) 

/(GCN) = l- RZA cos 6A/rA^) + (Z 8 cos 0B/>BI2)} (4b) 

Here, Z is nuclear charge, rA] the distance between the elec­
tron 1 and the nucleus A, and 8A the angle between the vectors 

Figure 1. Binding and antibinding regions in the CMN coordinates. 

rAi and R. For the floating or stable wave functions,10 the 
binding forces FR obtained in both coordinates coincide with 
each other. However, the operator/(CMN) is different from 
/(GCN), which was derived by Berlin,5 so that the resultant 
binding-antibinding diagram in the CMN coordinates is dif­
ferent from the original Berlin diagram. 

As in the Berlin diagram, the binding and antibinding re­
gions in the CMN coordinates are divided by the surface 
/(CMN) = 0." The boundary surface depends on masses and 
charges. Since the ratio Z/m is unity (au/amu) for hydrogen 
and approximately '/2 for the other atoms, the binding-anti­
binding diagrams in the CMN coordinates are classified ap­
proximately into two and only two types, an AB type and an 
AH (hydride) type, where AB means all of the homo- and 
heteronuclear diatomics except for the hydrides.12 This is not 
true for the Berlin diagram (the diagram in the GCN coordi­
nates) in which the boundary surface varies according to the 
ratios of the nuclear charges ZAjZB. The AB- and AH-type 
diagrams in the CMN coordinates are shown in Figure 1. 
These diagrams are the same as the special cases of the Berlin 
diagram; i.e., the present diagram for AB molecules coincides 
with Berlin's homonuclear case and that for hydrides with 
Berlin's heteronuclear case with ZA/ZB = '/2- We expect that 
the present diagrams will be useful in the interpretation of 
diatomic chemical bonds as well as the Berlin diagram. 

Generalization for Polyatomic Molecules 
In this section, we consider a generalization of the region-

functional concept of Berlin to polyatomic molecules using the 
H-F forces in the internal coordinates. Here we follow closely 
the FG matrix method.13 For a polyatomic molecule (or a 
molecular system), we consider the transformation from 
Cartesian coordinates (X, xj to internal coordinates {R, r(, where 
X and R denote the nuclear coordinates and x and r the elec­
tronic coordinates. The coordinates \R] mean the nuclear in­
ternal coordinates such as bond lengths, bond angles, out-
of-plane angles, torsional angles, etc., and their linear combi­
nations. They are obtained from the Cartesian coordinates 
as 

R = SX (5a) 

r = ( - l / M ) M ' X + x (5b) 

where S is the S vector defined by S = dR/dX, M the mass of 
the molecule, and M' the matrix whose element is nuclear mass 
(M')// = ntj. The first term on the right-hand side of (5b) fol­
lows from the choice of the origin of the electronic coordinates 
at the center of mass of the nuclei. The internal momenta |PR, 
Pr) conjugate to (R, r) are obtained from the momenta in the 
Cartesian coordinates |P\ , Px) as 

PR = G - 1 S M - 1 P X (6a) 

Pr = Px (6b) 

where G is the inverse kinetic energy matrix (G = SM - 1S) and 
M is the diagonal nuclear mass matrix.13 From (6a), the force 
operators |7R) for the internal coordinates (Z?) are obtained 
as 

7 R = Z [ Z Z 1 P R ] = G - 1 S M - 1 ^ X (7) 
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where JS x̂I mean the force operators in the Cartesian coordi­
nates. Then the internal forces are given by 

F R = ( 7 R ) 

= /fRP(ri)dri + nuclear part (8) 

where 

fR = G-'SM-'fx (9) 

The vector FR is the column vector whose element is the force 
along the internal coordinate R. The operators fR and fx mean 
the electronic parts of the force operators ^ R and J?x> re­
spectively. 

Equation 8 means that for the internal coordinate R under 
consideration, the space around the molecule can be divided 
into two different parts according to their different region-
functional roles. Since the electron density p(r\) is always 
positive (or zero), the electronic part (the first term) in (8) is 
positive if/R > 0 and negative if/R < 0. The positive force 
accelerates the nuclear rearrangement along the coordinate 
R, whereas the negative force resists the rearrangement. 
Consequently, we may define the region where/R > 0 as the 
accelerating (A) region and the region where/R < 0 as the 
resisting (R) region {generalized Berlin diagram). The A and 
R regions are separated by the boundary surface/R = 0, which 
depends on the internal coordinates, nuclear charges, masses, 
and molecular geometry. Generally, the boundary surface 
passes through the nuclear positions and'is planar in the vicinity 
of the nuclei (see, for instance, Figures 3-5). When we discuss 
the A-R regions for bond stretching and bending modes, the 
regions may be referred to as binding-antibinding and bend-
ing-linearizing regions, respectively. 

The present formulation of the generalized Berlin diagram 
is applicable to any internal, symmetry, and normal coordi­
nates of any polyatomic molecule and molecular systems. An 
interesting example is reaction coordinates. When we imagine 
a nuclear-rearrangement process along such a coordinate, the 
density reorganization which accumulates more electron 
density in the A region will contribute to accelerate the process, 
but the reverse flow of the electron density will contribute to 
resist the process. This is what the density-guiding rule 
implies.4 In the vicinity of the moving nuclei, the values of the 
operator/R in eq 8 are large, and, further, the regions in the 
direction of the coordinate always belong to the A region and 
those in the reverse direction to the R region. Therefore, the 
former reorganization has been called previously as the elec­
tron-cloud preceding and the latter as the electron-cloud in­
complete following.4 Thus, the generalized Berlin diagram 
gives an explicit definition of the regions for the electron-cloud 
preceding and incomplete following. Since these dynamic be­
haviors of the electron density have been shown to occur 
commonly in any nuclear-rearrangement processes including 
molecular geometries and chemical reactions,3'4'14'15 the 
generalized Berlin diagram will be useful for studying the 
density origins of such processes. 

Within the framework of the molecular orbital (MO) 
theory, the electron density of a system is represented as the 
sum of the MO densities. When the generalized Berlin diagram 
is applied to the MO density, further information may be ob­
tained. Superposing the diagram on the MO densities, each 
MO may be distinguished whether it is accelerating or resisting 
in nature.616'17 The changes in molecular geometry induced 
by the changes in the electronic structure such as excitations, 
ionizations, and electron attachments are also accounted for 
under the frozen-orbital approximation. An excitation from 
a resisting MO to an accelerating MO piles up the electron 
density in the A region and reduces the density in the R region, 
and hence it will cause the nuclear rearrengement in the di­
rection of the coordinate, and vice versa. An ionization from 

a resisting MO or an electron attachment to an accelerating 
MO will also induce a similar change in molecular geometry, 
and vice versa. Such a concept has been shown to be useful in 
predicting the changes in geometries accompanied by excita­
tions and ionizations.16-18 The effect of orbital relaxation fol­
lowing such changes in electronic structure has also been ex­
amined.17'19 The generalized Berlin diagram proposed here 
would be useful for these studies of molecular geometries. 

Diagrams in Other Coordinates 

Here, we note that the generalized Berlin diagram in other 
coordinate systems are easily obtained as a special case of the 
preceding formulation for the CMN coordinates. The diagram 
in the GCN (geometric-center-of-the-nuclei) coordinates is 
obtained from the preceding formulation simply by making 
all of the nuclear masses equal, i.e., 

WA = W 8 = . . . (GCN) (10) 

The superposed Berlin diagrams used by Bader7a and Johnson8 

are obtained by this procedure. A different coordinate system 
is the one in which the origin of the coordinates is fixed on a 
special nucleus A in the molecule or on a specially chosen 
center of the two or three nuclei in the molecule (e.g., the 
midpoint between equivalent nuclei A and B).20 These coor­
dinates may be called nuclear-centered (NC) coordinates. The 
diagram in the NC coordinates is obtained from the preceding 
formulation simply by letting 

wA = °° (NC on A) (Ha) 

for the former case and 

WA = WB = 1^ (NC on a point between A and B) 
(lib) 

for the latter case. 
Though different diagrams are obtained depending on the 

different choice of the coordinate system since the force op­
erator itself is dependent on the choice of the coordinate sys­
tem, we recommend the CMN coordinates since they are the 
ones appropriate for the description of the internal motion of 
molecules and molecular systems. In the coordinates other than 
the CMN coordinates, the force operator includes in general 
the operator of the external translational force. However, it 
is, of course, true that if we use the floating or stable wave 
function, the external translational force vanishes identically 
after integration, and any choice of coordinates gives an 
equivalent result. 

Application to Triatomic Molecules 

We consider the generalized Berlin diagrams in the CMN 
coordinates for a nonlinear triatomic molecule AB2 which has 
the bond length r\ = r2 = r and the bond angle <j> (see Figure 
2). The diagrams for the three symmetry coordinates 2 - , /2(r | 
+ r2), 4>, and 2-1/2(r1 — r2), are considered. 

In Table I, we have summarized the force operators corre­
sponding to these symmetry coordinates. The required trans­
formation matrix G - 1SM - 1 was obtained analytically.21 

There, the operator fx\ in the electronic part denotes the x-
directional operator of the force on the B| nucleus, and m and 
Z represent the nuclear mass and charge, respectively. 

From these force operators, we obtain the generalized Berlin 
diagrams for the three symmetry coordinates. In Figures 3-5, 
we show the diagrams for the equilibrium H2O molecule.22 

Figure 3 depicts the generalized Berlin diagram for the totally 
symmetric stretching mode. The lone-pair region above O and 
the regions behind the H's along the O-H bonds are shown to 
be the A region. The intermediate region which involves the 
two O-H bonds is the R region. Figure 4 shows the diagram 
for the bending mode. The regions just below O and outer sides 
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Table I. Force Operators for the Symmetry Coordinates in AB2 Molecules"'* 

7525 

mode electronic,/R 
force operator 

nuclear 

Vl 
(rl+r2) 

r<t> 

1 C 

-7?[s(fx2-fx\) + —Z !2W8ZvA - WA ( /vl +fy2)\] 
V 2 WA + 2WB 

r [c(fX2 - A i ) + —— 
2 m\+lm% 

\m\(fy\ +fyi) - 2WBZVA)' 

V 2 ^ ' r i ) Vl (wA + 2.S2W8) 
[2.SWBAA - smA(fx] + fxl) - cmA(fy\ -fy2)] 

Z B ( Z 8 + 4sZA) 
2VI^r2 

cZB
2 

4s2r2 

0 

0 j = sin (0/2) and c = cos (0/2). * The operator fx\ in the electronic part denotes the x-directional operator of the force on B] nucleus, 
and m and Z represent the nuclear mass and charge, respectively. 

Figure 2. Coordinate system for AB2 molecules. 

Figure 3. Generalized Berlin diagram for the totally symmetric stretching 
mode of H2O. Contour values are in e/A2 units. 

of the O-H bonds are the A region (linearizing region), while 
the lone-pair region of O and the trapezoidal region below H's 
are the R region (bending region). The generalized Berlin di­
agram for the antisymmetric stretching mode is shown in 
Figure 5. The A and R regions are antisymmetric with respect 
to the mirror plane. On the left-hand side, the bond region is 
resisting and the region below H is accelerating. 

In the regions near the nuclei, these diagrams show the 
patterns which are easily expected by intuition. Moreover, as 
the contour values show, the density near the nucleus is im­
portant to the H - F force acting on that nucleus. On these 
grounds, the intuitive ideas hitherto used by many authors may 
be justified. However, there is also a region for which such 
intuition may find difficulty. For example, in Figure 4, the 
region inside of the HOH triangle includes both the A and R 
regions. The contour lines near the boundary still have a large 
weighting/R values. We expect that such a situation will occur 
more frequently for more complex polyatomic systems. 

Geometry of H2O Molecule 

In this section, we discuss the geometry of the H2O molecule 
superposing the generalized Berlin diagrams on the density 
difference maps. We use the density difference Ap defined 
by23,24 

Ap = PH2O - IPO + PH + PH! 

Figure 4. Generalized Berlin diagram for the bending mode in the equi­
librium H2O molecule. Contour values are in e/A2 units. 

Figure 5. Generalized Berlin diagram for the antisymmetric stretching 
mode in the equilibrium H2O molecule. Contour values are in e/A2 

units. 

It gives the change in the electron density due to the molecular 
formation from the separated atoms. We have used the dif­
ference Ap instead of the total density P H 2 O since the latter is 
inconvenient to see the small changes in the electron density 
induced by the small displacement around the equilibrium 
geometry. We consider the nuclear displacements along the 
three internal coordinates given in the preceding section. 

For the totally symmetric stretching mode, the Ap maps 
superposed on the generalized Berlin diagram are shown in 
Figure 6. The density difference has been calculated from the 
floating wave function reported previously.14 In the Ap maps, 
the solid and broken lines mean the increase and decrease of 
the electron density relative to the sum of the atomic densi-
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r=0.7A r=i.3A 
Figure 6. Generalized Berlin diagram superposed on the density difference 
map in the totally symmetric bond-stretching process in H2O. The solid 
and broken lines in the density difference maps mean the increase and the 
decrease of electron density relative to the atomic density. The shaded parts 
of the generalized Berlin diagrams are the A region in the totally sym­
metric stretching mode. 

Figure 7. Generalized Berlin diagram superposed on the density difference 
map in the bending process in H2O. The solid and broken lines in the 
density difference maps mean the increase and the decrease of electron 
density relative to the atomic density. The shaded parts of the generalized 
Berlin diagrams are the bending region. 

ties.24 The A region is shaded in the generalized Berlin di­
agram. At the equilibrium geometry (r = 0.99 A),22 the force 
due to the density in the A region is balanced with that due to 
the density in the R region and the nuclear repulsive force. 
Actually, the force on H was calculated to be zero from this 
density.14 When the 0 - H bonds are shortened to 0.7 A, the 
electron density in the A region increases particularly in the 
lone-pair region above O, while the density in the R region 

1P 1 

Ar= O (Ea.) 

Figure 8. Generalized Berlin diagram superposed on the density difference 
map in the antisymmetric bond-stretching process in H2O. The solid and 
broken lines in the density difference maps mean the increase and the 
decrease of electron density relative to the atomic density. The shaded parts 
of the generalized Berlin diagrams are the A region in the antisymmetric 
stretching mode. 

decreases (see the 0.04 contours near the bonds). This density 
reorganization is reasonable for the elongation of the bonds. 
When the bonds are elongated to 1.3 A, the electron density 
flows from the A region to the R region and resists the bond-
elongation process. 

The density behavior along the bending process is depicted 
in Figure 7. The shaded region is the bending region. At 0 = 
150°, there is more electron density in the bending region than 
in the linearizing region. The force on H obtained at 0 = 150° 
is 0.069 au in the bending direction.14 At 4> = 100°, the bending 
force balances the linearizing force as understood from the 
nearly symmetric distribution of the electron density with re­
spect to the O-H axis. The transverse forces on H's vanish at 
this bond angle.14 At a smaller angle, 0 = 70°, there is more 
electron density in the linearizing region than in the bending 
region, especially in the O-H bond region. The force on H 
calculated at this angle is 0.102 au in the linearizing direc­
tion.14 Consequently, the present analysis is in agreement with 
the fact that the equilibrium bond angle is evaluated to be 100° 
from the actual force and energy calculations.14-22 

Figure 8 shows the density reorganization for the antisym­
metric stretching mode. The shaded part is the A region which 
works to lengthen the left bond and shorten the right bond.21 

As the nuclei moves along the mode, the density in the R region 
increases (see the 0.01 contour near the left bond), while the 
density in the A region decreases (see the contours near the 
right bond). The electron density in the lone-pair region above 
the oxygen slightly rotates toward the left. This rotation throws 
more electron density into the R region. All of these density 
behaviors resist the process and work to restore the bonds to 
the equilibrium. 

Summary 

In this paper, we have studied the region-functional role of 
the electron density distribution on the basis of the H-F the­
orem. We have derived the binding-antibinding diagram for 
diatomic molecules using the CMN coordinates and compared 
it with the diagram in the GCN coordinates, i.e., the Berlin 
diagram.5 In the CMN coordinates, the diatomic diagrams are 
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shown to be classified approximately into two types, AB and 
AH types. Then, we have explicitly generalized Berlin's re­
gion-functional concept of electron density to polyatomic 
molecules, using the CMN coordinates. The diagrams for other 
coordinates (GCN and NC) are shown to be obtained as spe­
cial cases. In the generalized Berlin diagram, the space around 
a molecule is divided into the accelerating (A) and resisting 
(R) regions with respect to an internal coordinate of the mol­
ecule under consideration. The electron density in the A region 
accelerates the nuclear rearrangement along the coordinate, 
while the density in the R region resists it. Therefore, the 
generalized Berlin diagram defines unambiguously the regions 
for the electron-cloud preceding and incomplete following. It 
is suggested that such diagrams are useful in studying the 
density origin of the nuclear-rearrangement processes. The 
concept of the generalized Berlin diagram is exemplified for 
the three internal modes of H2O molecule. The electron density 
reorganizations at the nonequilibrium geometries are seen to 
occur in such a way that facilitates the restoring of the molecule 
into its equilibrium geometry. 
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